Comparative Gene Ontology Website User Guide http://www.comparativego.com/

Author: Mario Fruzangohar

This website has been designed for researchers who want to study the association between gene ontology and lists of genes or samples in order to understand the biological pathways involved or to select important genes for further analysis.

Gene Ontology (GO) is divided into three name spaces: Molecular Function, Biological Process and Cellular Component which we abbreviate as MF, BP and CC respectively.

Note 1: All the genes used as illustrations in this manual were extracted from the *Streptococcus* bacterial genome. Currently, the database associated with this web server contains information from bacteria, viruses, zebrafish, yeast and humans. However, it is eventually envisaged to contain information on all available species.

Note 2: In this document we use the terms "gene list" and "sample" interchangeably. Also, the term "GO enrichment" means GO enrichment at the protein level. The enrichment method is explained in the publication describing the Comparative GO database.

Note 3: Figures in this manual may not contain real and accurate data.

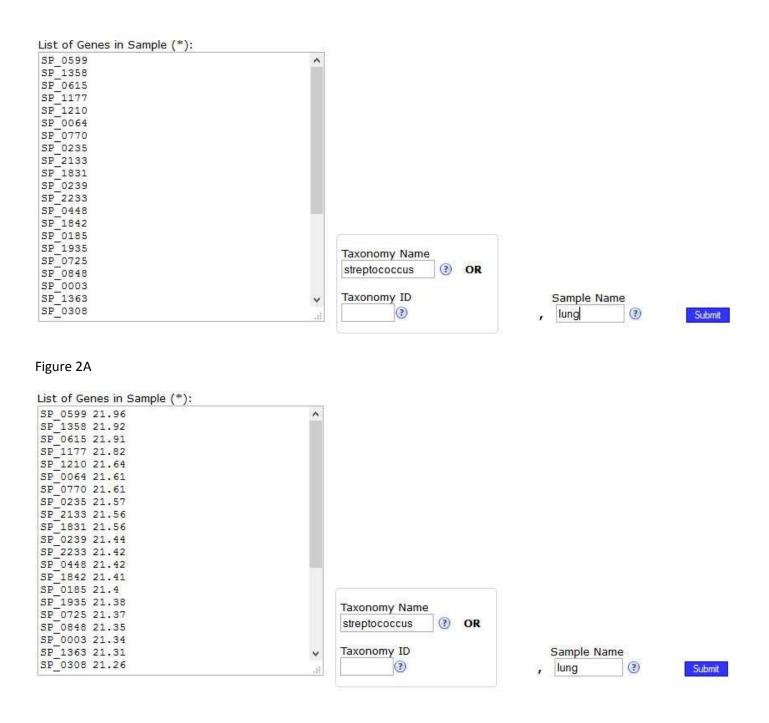
For the sample data we have used Streptococcus pneumoniae TIGR4 ordered locus gene names where genes have been over-expressed in three samples. Actual data is presented at the bottom of this manual so that researchers can copy and paste this into the website to reproduce the analyses in the manual. Additional examples of whole genome gene lists are available and accessible from the web server home page.

Home Page

Submitting a gene list or sample

When visiting the home page of Comparative GO initially, it appears as in Figure 1:

· Yeast


For each sample, enter or paste list of genes (one gene per line) and enter a Sample Name, then press Submit (You can submit unlimited number of samples)
Example For Sample Gene Lists

Example For Whole Genome including expression levels

List of Genes ir	1 Sample (*):						
			Taxonomy Name Taxonomy ID 2		nple Name	Submit	
Sample Name	Genes Submitted	Genes Found	Sample Detail	Taxonomy	Tree View		Order Selected Samples
Tabular Data Comp	g Selected Samples' GO En varing Selected Samples' GC velected Samples vs. Genom) Enrichment					ocal ALL Samples
-Test of Sig		a toot to compare	colected complex's CO prot				
	hment value Propor		selected samples's GO prof Name Space All			Perform Hypothesis	Test

Figure 1

This website can accept lists of genes in samples in two formats. For the first format, genes are entered one per line in the "List of Genes in Sample" box provided as shown in Figure 2A. In the second format, genes and their expression level coefficients are entered in one line separated by a Space or Tab character (i.e. blank space character), as shown in Figure 2B. If expression levels are available for genes, it is better to include these expression levels since this produces more accurate reports. Optimally, expression levels should be normalised. Expression levels can be taken from microarray results or RNA-Seq RPKM/FPKM counts. If a gene does not have an expression level, the system will assume its coefficient equals 1. Thus, the system can accept a list that includes genes with and without expression levels. To produce Figure 2A we selected a list of genes from a text editor in multiline format where there was one gene per line. The selection was then copied and pasted into the "List of Genes in Sample" box. A meaningful name was entered into the "Sample Name" box, (i.e. in this case "lung" was entered) before clicking on "Submit". In our example we submitted an additional two samples that we named "brain" and "blood".

Figure 2B

There is no limit to the number of samples that can be submitted for comparison to each other. If a unique Sample Name is not provided for a submitted list of genes then the system will choose a sequential name (Sample 1,2,3...) for it automatically. The order of list submission is not important. As we explain later, samples can be selected in any order that is suitable for biological study and comparisons.

After each sample submission, information is provided on the samples as shown in Figure 3. For each list, the first column is a check box for selecting that sample for further processing, the second column is the sample name itself, the third column shows the number of genes have been submitted in the sample, the fourth column shows the

number of corresponding genes found in the database, the fifth column contains a link to another page providing details about the sample, the sixth column shows the taxonomy name of the organism to which the genes belong as well as the total number genes in the whole genome of that organism, the seventh column gives a link to the gene ontology tree for that sample, the eighth column contains a link to build and draw regulatory networks between genes and GO groups of the sample and, finally, the last column shows the order of sample selection or the order in which the check boxes in the first column were clicked to select the samples.

	Sample Name	Genes Submitted	Genes Found	Sample Detail	Taxonomy	Tree View	GO Network	Order
-	lung	64	61	Details	Streptococcus pneumoniae TIGR4 (2115 genes)	Tree View	Network	1
-	blood	13	13	Details	Streptococcus pneumoniae TIGR4 (2115 genes)	Tree View	Network	2
~	brain	278	263	Details	Streptococcus pneumoniae TIGR4 (2115 genes)	Tree View	Network	3
P		ng Selected Sampl						L Samples

Figure 3

Taxonomy selection mechanism

Each taxonomy ID has its own Gene Ontology records in the database. In species that have many strains, each strain has its own GO records. I that case, selecting a strain with the largest number of GO records may give a more informative analysis. To improve taxonomy selection, the system follows two different strategies.

The first strategy is employed when a user is uncertain about the taxonomy ID but knows part of the taxonomy name. For example, if a user wants to submit a list of genes related to the Streptococcus bacterial genus, they can leave the Taxonomy ID blank and type "streptococcus" under Taxonomy Name field as shown in Figures 2A and 2B. If the specified taxonomy name has multiple strains in the database, then the system will use the taxonomy that has the greatest number of matching genes in the database. In our example, the system finds the Streptococcus strain "Streptococcus pneumoniae TIGR4" (taxonomy id 170187).

The system will accept non-scientific names for model organisms such as; "human", "zebrafish" and "yeast". If the user enters a name that belongs to the top of a taxonomy tree (i.e. too general a name), then the system must search many records in the database and, potentially, will take longer to find best taxonomy.

The second strategy is employed when a user is certain about the taxonomy ID. The taxonomy ID is entered at the time of submission as shown in Figure 4.

SP_0599 21.96	*			
SP_1358 21.92				
SP_0615 21.91				
5P_1177 21.82				
3P 1210 21.64				
5P 0064 21.61				
SP 0770 21.61				
5P 0235 21.57				
5P 2133 21.56				
SP 1831 21.56				
5P 0239 21.44				
5P 2233 21.42				
3P 0448 21.42				
5P 1842 21.41				
SP 0185 21.4		7		
5P 1935 21.38		Taxonomy Namo		
SP 0725 21.37		Taxonomy Name		
SP 0848 21.35		OR		
SP 0003 21.34				
SP 1363 21.31	~	Taxonomy ID	Sample Name	
SP 0308 21.26	1.11	170178 🕐	, 3	Submit

Figure 4

The user is then shown a number of GO records from the parent taxonomy (in our example, the parent taxonomy is 1313), and is also shown GO records for all the strains in the family (i.e. sibling strains) as in Figure 5.

			NEUMONIAE(GO R D ON GO RECORDS			v	
Sample Name	Genes Submitted	Genes Found	Sample Detail		STREPTOCOCCUS PNEUMONIAE GA58981 (5008) STREPTOCOCCUS PNEUMONIAE GA60132 (4984) STREPTOCOCCUS PNEUMONIAE SP14-BS69 (4982) STREPTOCOCCUS PNEUMONIAE GA58581 (4957)	rk	Orde
lung	64	61	Details	Streptor	STREPTOCOCCUS PNEUMONIAE GA56348 (4954)		
blood	13	13	Details	Streptor	STREPTOCOCCUS PNEUMONIAE GA62331 (4950) STREPTOCOCCUS PNEUMONIAE GA41410 (4948)		
brain	278	263	Details		STREPTOCOCCUS PNEUMONIAE 2070335 (4948)		
lung	31	31	Details	Streptor	STREPTOCOCCUS PNEUMONIAE GA62681 (4923)		
sample1	31	31	Details	Streptor	STREPTOCOCCUS PNEUMONIAE GA54354 (4915)		
	ng Selected Sample				STREPTOCOCCUS PNEUMONIAE GA56113 (4905) STREPTOCOCCUS PNEUMONIAE GA04672 (4901) STREPTOCOCCUS PNEUMONIAE GA04216 (4888) STREPTOCOCCUS PNEUMONIAE GA19998 (4888) STREPTOCOCCUS PNEUMONIAE GA60190 (4875) STREPTOCOCCUS PNEUMONIAE GA47562 (4868) STREPTOCOCCUS PNEUMONIAE GA47502 (4839) STREPTOCOCCUS PNEUMONIAE GA49447 (4832) STREPTOCOCCUS PNEUMONIAE GA458771 (4827)		ed Sample

Figure 5

At this stage the user can select the parent taxonomy checkbox or any of the siblings in the drop down box. If the user does not select any of them (i.e. indicating that they are happy with our own taxonomy id), then the user can just click on the submit button again and the system will proceed using the original taxonomy id.

Details of a Sample

In the example shown, the user wished to see details of the "lung" sample. Clicking on the Details link took them to a page such as that shown in Figure 6. As one can see in the image, the page shows the list of found genes along with their expression level, type of gene name and finally the accession numbers of the proteins that are produced by

that gene. In this system the "Gene Name Type" can be one of five possibilities: (1) Primary (2) Synonym (3) Ordered Locus (4) ORF or (5) Uniprot Protein Accession ID

If some genes were not found in the database, they will be listed at the end of the 'Detail' page.

LUNG TAXONOMY:170187

Gene	Expression Level	Gene Name Type	Proteins Accession Numbers
SP_0325	4.54	ORDERD-LOCUS	Q97SK7
SP_0327	5.17	ORDERD-LOCUS	Q97SK5
SP_0333	4.3	ORDERD-LOCUS	I6L8R8
SP_0335	4.42	ORDERD-LOCUS	I6L8V3
SP_0336	4.86	ORDERD-LOCUS	P14677
SP_0341	4.62	ORDERD-LOCUS	Q97SJ8
SP_0342	4.01	ORDERD-LOCUS	Q54514, O54522, P96472, Q54796, O07337
SP_0349	5.26	ORDERD-LOCUS	Q9AHD2
SP_0421	5.75	ORDERD-LOCUS	I6L8V8
SP_0423	6.63	ORDERD-LOCUS	I6L8P7
SP_0424	5.59	ORDERD-LOCUS	Q9FBC0, P59201
SP_0429	7.79	ORDERD-LOCUS	Q97SF3
SP_0430	4.87	ORDERD-LOCUS	Q97SF2
SP_0431	5.74	ORDERD-LOCUS	Q97SF1
SP_0437	5.57	ORDERD-LOCUS	Q97SE6
SP_0438	4.47	ORDERD-LOCUS	Q97SE5
SP_0439	5.1	ORDERD-LOCUS	Q97SE4
SP_0445	8.07	ORDERD-LOCUS	Q97SD9
SP_0446	5.31	ORDERD-LOCUS	Q97SD8
SP_0447	4.33	ORDERD-LOCUS	Q97SD7
SP_0448	4.04	ORDERD-LOCUS	Q97SD6
SP_0675	16.8	ORDERD-LOCUS	Q97RW1
SP_0676	9.65	ORDERD-LOCUS	Q97RW0
SP_0677	6.94	ORDERD-LOCUS	Q97RV9
SP_0678	5.21	ORDERD-LOCUS	Q97RV8
SP_0683	10.5	ORDERD-LOCUS	Q97RV3
SP_0684	9.61	ORDERD-LOCUS	Q97RV2
SP_0685	8.47	ORDERD-LOCUS	Q97RV1
SP_0686	6.89	ORDERD-LOCUS	Q97RV0
SP_0691	6.62	ORDERD-LOCUS	Q97RU6
SP_0692	10.21	ORDERD-LOCUS	Q97RU5
SP_0693	8.29	ORDERD-LOCUS	Q97RU4
SP_0694	6.33	ORDERD-LOCUS	Q97RU3
SP_0699	9.24	ORDERD-LOCUS	Q97RT9
SP_0702	5.88	ORDERD-LOCUS	Q97RT8, Q9ZHA6, P0CB78
SP_0771	12.63	ORDERD-LOCUS	Q97RN2
SP_0772	8.68	ORDERD-LOCUS	Q97RN1
SP_0773	6.86	ORDERD-LOCUS	Q97RN0

Figure 6

Hypothesis test to compare overall Samples' GO distribution

In order to compare the overall GO distribution between 2 or more samples, the system provides a non-parametric hypothesis testing tool on the home page. In general, we cannot assume that the distribution of GO groups in a sample is normal. As shown in Figure 7, we have selected 2 samples (lung and brain). At the bottom of the home page there is a group box titled 'Test of Significance'. Inside that, there are two drop-down boxes. First one can choose the type of GO enrichment values (original protein level or percentage). It is important to note that the original protein levels of GO groups between two samples can change significantly but that their percentages do not. The second drop-down box can limit the GO name space. It is a good practice to perform hypothesis testing in a separate name space, because the GO enrichments of each name space can change independently.

After selecting samples and parameters, the user clicks the 'Perform Hypothesis Test' button. The results of 3 different tests are shown, the Wilcoxon signed rank test, the KS paired test and the chi-square test for 2 samples. It is important to note that the null hypothesis assumes that the GO enrichment distributions are the same or have not changed significantly.

Unlike the overall GO distribution hypothesis test, we can perform hypothesis tests for each individual GO group using another part of the system explained in the section 'Comparing Sample versus Genome'.

Taxonomy ID

Sample Name

(If left blank, system will find it)

Submit

Delete List(s)

	Sample Name				Taxonomy	Tree View	GO Network	Order
J	lung	64	61	Details	Streptococcus pneumoniae TIGR4 (2115 genes)	Tree View	Network	1
	blood	13	13	Details	Streptococcus pneumoniae TIGR4 (2115 genes)	Tree View	Network	
J	brain	278	263	Details	Streptococcus pneumoniae TIGR4 (2115 genes)	Tree View	Network	2

Pie Chart Comparing Selected Samples' GO Distribution

Tabular Data Comparing Selected Samples' GO Distribution

Graph Comparing Selected Samples vs. Genome' GO Distribution

Test of Significance		
Non-parametric paired hypothesis test to compare	selected samples's GO protein level values	
Type of Protein value Proportion(Percentage) 🔻	Name Space Cellular Component -	Perform Hypothesis Test
	uity correction : p-value: 0.7760688	
when signed rank test with contin		
Two-sample Kolmogorov-Smirnov tes	t : p-value: 0.03663105	

Figure 7

Interpretation of p-values depends on levels of significance.

In the next example the user selects multiple (three) samples. A non-parametric test is then performed with results similar to what is seen in Figure 6.

31 117 16	25 81 8	<u>Details</u>	Streptococcus pneumoniae(1619 genes) Streptococcus pneumoniae(1619 genes)	<u>Tree View</u> <u>Tree View</u>	1
		1100		<u>Tree View</u>	3
16	8	Details			
		Decano	Streptococcus pneumoniae(1619 genes)	Tree View	2
moaring Selected	I Samples' GO Distrib	ution			
inpaning beloated					
g Selected Sampl	es vs. Genome' GO	Distributio	n		
	omparing Selected	omparing Selected Samples' GO Distrib	aring Selected Samples' GO Distribution omparing Selected Samples' GO Distribution Ig Selected Samples vs. Genome' GO Distributio		omparing Selected Samples' GO Distribution

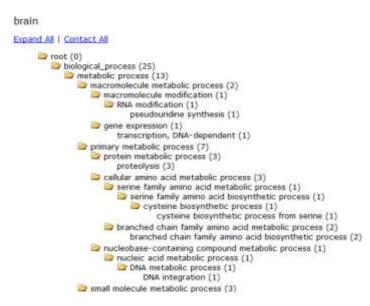
Kruskal-Wallis rank sum test : p-value: 1.055023e-23

Figure 8

Tree view Presentation of Gene Ontology

Gene ontology groups build classic tree structures. The Comparative GO system can present such structures and GO enrichments levels.

For example clicking on the 'Tree View' link of the sample 'brain' leads us an intermediate page with three links, MF, BP and CC, as shown in Figure 9. The numbers in parentheses next to each gene ontology represent the GO enrichment of that gene ontology name space.


brain

Gene Ontology Name Spaces

Biological Process (25) Molecular Function (35) Cellular Components (16)

Figure 9

Next, clicking on BP gives a display of the BP tree structure as shown in Figure 10. On that page one can selectively collapse any gene ontology group by clicking on its folder icon in order to see its sub groups. In each gene ontology group, there is number that shows the protein enrichment of that group. To collapse all nodes one can click Expand All and to close all nodes one can click Contact All.

Figure 10

Note: At any stage, one can return to the home page by clicking the back button at the top right hand corner of the page.

Comparing multiple samples

To select multiple samples on the home page, just click on the left most column checkbox. The order in which check boxes are clicked is shown in the right hand column. One may wish to select samples in a specific order for reasons such as the samples are related to different time stamps, or the samples are from different tissues where metabolic pathways are in a specific order. Figure 11 shows an example of selection order, where a user first clicked on 'lung' then 'blood' and finally 'brain'.

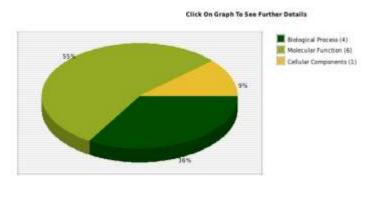
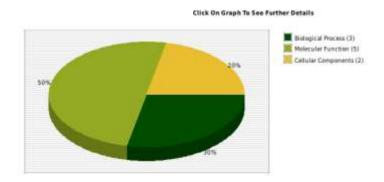

List Ger	nes Submitted	Genes Found	Taxonomy	Tree View	Order
🔽 lung	31	25	Details Streptococcus pneumoniae(1619 genes)	Tree View	1
📝 brain	117	81	Details Streptococcus pneumoniae(1619 genes)	Tree View	3
V blood	16	8	Details Streptococcus pneumoniae(1619 genes)	Tree View	2

Figure 11


Gene Ontology Pie Chart

An informative method for comparing multiple samples is to compare their GO enrichment proportions side by side. Comparative GO provides comprehensive and interactive tools to perform these comparisons. At the home page, samples are selected in the desired order, and then the blue button 'Pie Chart Comparing Selected Samples' GO Distribution' is clicked. This opens a page similar to that shown in Figure 12.

lung Protein Distribution

blood Protein Distribution

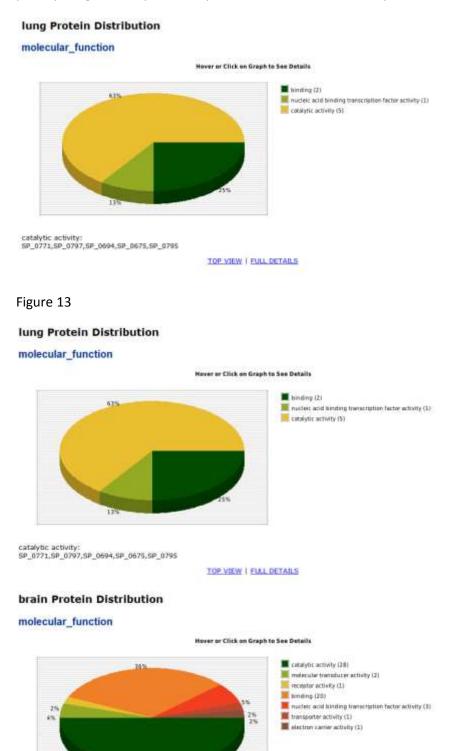


Figure 12

Figure 12 shows a top view comparison of GO name spaces among samples with enrichment levels stated in the legend and percentages shown on the pie chart itself. Each slice of the pie chart is mouse sensitive. When the mouse is hovered over a slice the genes involved are revealed. If one clicks on a slice further details are given of the related gene ontology (one level deeper in the GO tree as shown in Figure 15a). For example, if MF of the 'lung' pie chart is clicked that takes the user to something similar to Figure 13.

Note: Remember that each pie chart updates independently, and it does not update the whole page. (This makes navigation more rapid.)

In Figure 13, the top pie chart presents GO groups of Molecular Function for the 'lung' sample beside their GO enrichment level. If one hovers the mouse over a slice (e.g. Catalytic Activity in Figure 13), then a list of genes participating in 'Catalytic Activity' is revealed underneath the pie chart.

As a second example we shown the Molecular function of 'lung' and 'blood' samples together and by clicking the MF slice in both pie charts, something similar to Figure 14 is shown. One can now compare the two samples to find any biological significance and also to see the genes that are related to them.

It is a good practice to compare multiple samples' GO enrichment at the same level (depth) of the GO tree.

In the next section we explain the mechanics behind Pie Chart navigation.

Navigation across Gene Ontology tree

When navigating along Pie Charts to see different levels of GO groups one is actually traversing along the GO tree from top to bottom and vice versa. A Gene Ontology tree is organized hierarchically as in Figure 15(a). An example of navigation along this tree is depicted by the grey colour nodes in figure 15(a). At any given node of the tree, one can see child nodes and their GO enrichments. From a Pie Chart point of view, at each level one clicks on a slice to see details of that slice all the way down until one reach the outermost level (the 'leaves') of the tree. Comparative GO provides up and down buttons underneath each pie chart for navigation. At each level, there is also a 'Top View' link which transfers view to the top of tree, similar to the view in Figure 12. As one can see in Figures 13 and 14, there is a link 'Full Details' underneath each chart. This link presents the most detailed GO groups of each subspace MF, BP or CC. In other words, considering the Gene Ontology tree in Figure 15(b), greyed nodes or leaves of the tree will be displayed. One example of this presentation is shown in Figure 16, where a user desires to see full details of the MF name space in the 'lung' sample.

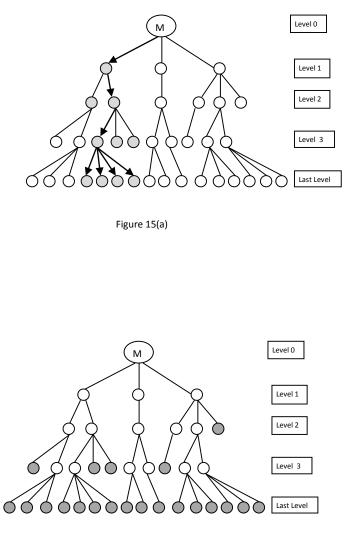


Figure 15(b) leaves are grey nodes

lung Protein Distribution

Molecular Function Details

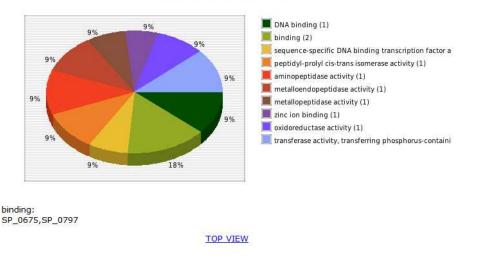
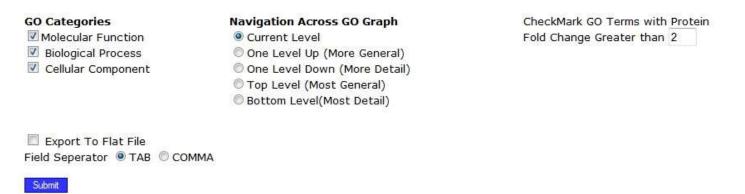



Figure 16

Tabular Gene Ontology Enrichment Analysis and Gene Selection

In this analysis, Comparative GO provides information in table format for comparing the function of genes e.g. to allow better gene selection and/or more insight into biological mechanisms. To perform this analysis, one first selects samples in the desired order at the home page, then clicks the blue button 'Tabular Data Comparing Selected Samples' GO Distribution'. This action takes the user to a page similar that shown in Figure 17.

To navigate to other levels of GO graph select a new level from above and click submit again

Figure 17

Before explaining the report criteria in Figure 17, we show the output of the report obtained when the submit button is clicked as shown in Figure 18.

Columns of the Report

The first column of the table gives the gene ontology name. Then for each sample (samples are ordered based on Figure 11) there is a column showing protein the enrichment value related to that ontology. Protein enrichment values are normalized based on the size of sample (the number of genes in the sample). Smaller samples' enrichment values are scaled to higher values to make them comparable with bigger samples. Obviously, the biggest

sample's enrichment values remain unchanged. When we compare whole genomes of species under multiple biological conditions, normalization is not applied because sample size is equal to the genome size for all samples. These values in the sample-specific columns are summarized in the 'Average Fold Change' Column that shows the geometric average of enrichment value fold changes among samples in that particular gene ontology. This number can give an overall idea of whether a gene ontology's enrichment value has been increased or decreased, and to what extent this change has been done between samples. This type of enrichment analysis can have significant biological meaning. For example in Figure 18, Biological Process has a 2.129 average fold change that, in fact, is a geometric average of 168.7/977.16 and 4429.81/168.7.

Gene Ontology	lung Protein Level	blood Protein Level	brain Protein Level	Average Fold Change	Common Genes Involved	All Genes Involved
	1039.96	270.87	4873.86	2.165		SP_0929,SP_0788,SP_0798,SP_0342,SP_0702,SP_0445, SP_0927,SP_0676,SP_0782,SP_0920,SP_0771,SP_0930, SP_0439,SP_0446,SP_0423,SP_0797,SP_0928,SP_0694, SP_0421,SP_0919,SP_0675,SP_0447,SP_0921,SP_0795, [⊗]
biological_process	977.16	168.7	4429.81	2.129		SP_0920,SP_0771,SP_0929,SP_0342,SP_0439,SP_0798, SP_0676,SP_0927,SP_0782,SP_0437,SP_0438,SP_0788, SP_0694,SP_0928,SP_0797,SP_0922,SP_0423,SP_0421, SP_0424,SP_0336,SP_0446,SP_0445,SP_0447,SP_0325, 🕅
cellular_component	405.23	134.8	2752.42	2.606		SP_0424,SP_0439,SP_0788,SP_0779,SP_0798,SP_0342, SP_0431,SP_0336,SP_0928,SP_0787,SP_0325,SP_0335, SP_0423,SP_0327,SP_1959,SP_1823,SP_1797,SP_1798, SP_0082,SP_0641,SP_0395,SP_0589,SP_1360,SP_0967,S
C	2422.25	F74 37	10050.00			

Level: 1 out of 14 of Gene Ontology Graph

Figure 18

For each gene ontology, the 'Common Genes Involved' column shows genes that are present in that gene ontology among all samples. In fact, it is the intersection of the gene sets in all samples. In contrast, the 'All Genes' column shows the union of the gene sets. When each sample is equal to the whole genome, these two columns contain the same list of genes.

To save space on the page, each cell shows a maximum of 4 lines. If a user wishes to see the full list of genes they can click on the small arrow icon at the bottom right corner of the cell.

In this report one can navigate to all levels of the GO tree. At each level of the GO tree, all the nodes at that level are shown as in Figure 15(b). In contrast, in the pie chart, we can view a subset of the nodes at any given level as shown in Figure 15(a).

Reporting Criteria

As Figure 17, the first group of check boxes are MF, BP and CC. Deselecting each item filters out that name space from analysis so that one sees fewer items in the result table.

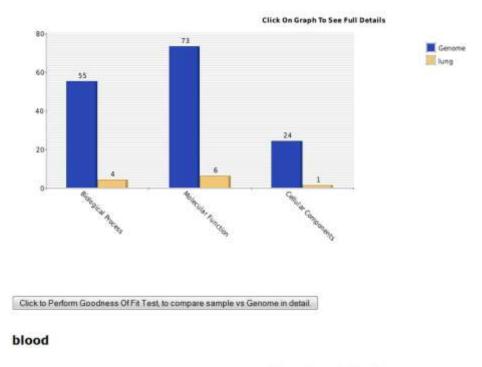
A second group of radio buttons are navigational buttons. 'Current Level' is a pointer that indicates the level of the GO tree being observed. When one first visits the page, Current Level is at the 'top level' (Most General) of the GO tree. 'Bottom Level' (most details) means the last level of the tree (or the leaves of tree as seen as the grey nodes in Figure 15(b)). We can also change the Current Level by selecting 'One Level Up/Down' options.

Next, there is text box with default value 2 that defines a cutoff to highlight GO groups with an average fold change more than 2 or less than (1/2). This can be helpful if we are interested in GO groups with specific fold changes.

For example, Figure 3 shows level 3 of the GO tree. GO groups with green checkmarks have significant average fold changes. GO groups with consistent increases or decreases in enrichment are highlighted by upward/downward arrows (e.g. see sequence-specific DNA binding transaction factor activity in Figure 19).

Level: 3 out of 14 of Gene Ontology Graph

Gene Ontology		blood Protein Level	brain Protein Level	-000	Average Fold Change	Common Genes Involved	All Genes Involved
sequence-specific DNA binding transcription factor activity	60.6	68.96	128.68	t	1.457		SP_0676,SP_0927,SP_1799,SP_1821,SP_0395,SP_1854, SP_0661,
catalytic activity	782.26		3686.39		4.712♥		SP_0920,SP_0771,SP_0930,SP_0439,SP_0446,SP_0445, SP_0423,SP_0797,SP_0928,SP_0694,SP_0421,SP_0919, SP_0675,SP_0447,SP_0702,SP_0921,SP_0795,SP_0349, SP_0788,SP_0929,SP_0342,SP_0327,SP_0424,SP_0922, \bigotimes
plasma membrane	81.07	71.88	552.64		2.611		SP_0336,SP_0928,SP_0787,SP_1797,SP_1798,SP_0848, SP_2084,SP_0480,SP_2184,SP_2087,SP_2108,SP_0457, SP_2109,SP_0599,SP_0757,SP_0758,SP_0750,SP_0878, SP_1397,
metabolic process	889.93		3596.96		4.042		SP_0920,SP_0771,SP_0929,SP_0342,SP_0439,SP_0798, SP_0676,SP_0927,SP_0437,SP_0438,SP_0788,SP_0694, SP_0928,SP_0797,SP_0922,SP_0423,SP_0421,SP_0424, SP_0446,SP_0445,SP_0447,SP_0336,SP_0921,SP_0795, S
membrane	105.81	101.3	969.49		3.027		SP_0431,SP_0336,SP_0928,SP_0787,SP_1823,SP_1797, SP_1798,SP_0308,SP_1272,SP_0082,SP_0144,SP_0181, SP_0185,SP_0489,SP_0641,SP_0905,SP_0913,SP_2116, SP_0848,SP_2084,SP_0480,SP_2184,SP_2087,SP_2108, \bigotimes
integral component of membrane	119.69	71.88	707.13		2.431		SP_0336,SP_0928,SP_0787,SP_0325,SP_0335,SP_1798, SP_1797,SP_0750,SP_0757,SP_0064,SP_2184,SP_0063, SP_0410,SP_1358,SP_1173,SP_0145,SP_0758,SP_0599, SP_2094,SP_2008,SP_2109,SP_0457,SP_0878,SP_0848, S
oxidoreductase activity	135.98		420.19		3.09		SP_0919,SP_0675,SP_0421,SP_0447,SP_0606,SP_0384, SP_0764,SP_0409,SP_0766,SP_1119,SP_1178,SP_1777,
hydrolase activity	191.41		1292.9		6.755		SP_0930,SP_0439,SP_0797,SP_0928,SP_0694,SP_0921, SP_0342,SP_0922,SP_0322,SP_0150,SP_0936,SP_0588, SP_0878,SP_0967,SP_1784,SP_1008,SP_0641,SP_2094, SP_0401,SP_0403,SP_1356,SP_2060,SP_0872,SP_0259, ⊗
enzyme regulator activity	22.67						SP_0349,
cell division site	19.05		34.86		1.83		SP_0335,
periplasmic space	22.28		75.82		3.403		SP_0327,SP_0749,
							SP_0929,SP_0788,SP_0927,SP_0676,SP_0782,SP_0798, SP_0438 SP_0349 SP_0780 SP_0437 SP_0439 SP_0336

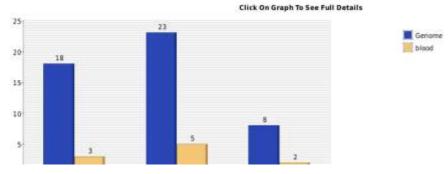

Figure 19

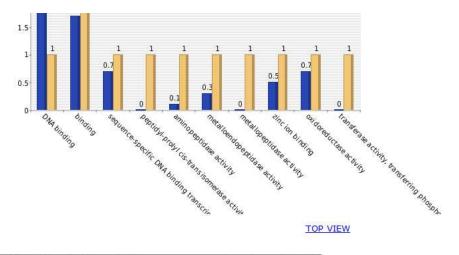
Comparing Sample versus Genome

Unlike the previous analyses that compared selected samples with each other, below we show a comparison of one sample with its genome. In this way the system can detect GO groups that are over/under represented. Graphical bar charts and a hyper geometric statistical test are employed to detect these groups.

To perform this analysis, samples are selected at home page as explained previously. One then clicks on the 'Graph comparing Selected Samples vs. Genome GO Distribution' blue button. In a new page one can then see bar charts that show enrichment levels related to MF, BP and CC from comparisons of the sample versus the relevant genome's expected value for each sample, as in Figure 20.

lung

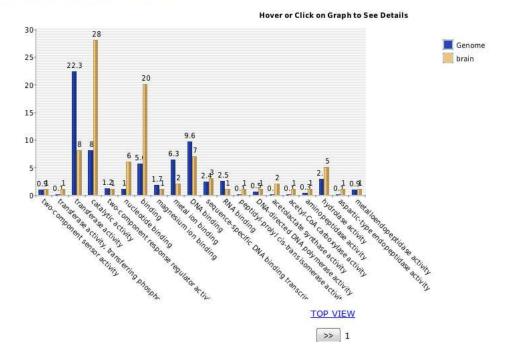



Figure 20

Any significant difference in the length of the sample and genome bars is cause for further investigation. For example one may wish to know why MF in the 'lung' sample is so different to the genome. Therefore, one clicks on the MF bar in 'lung' resulting in a display such as in Figure 21.

Note: If number of GO groups exceeds 20, then Forward/Backward << and >> buttons will be provided underneath the chart to access separate pages . As for the pie charts, each sample bar chart is updated independently and the entire page is not updated when a chart is clicked on.

As seen in Figures 18 and 19, under each chart there is blue button that performs a goodness of fit hypothesis test to compare the sample's protein distribution versus the genome's expected protein distribution. Figure 20, shows an example result from performing this test for the 'lung' sample.

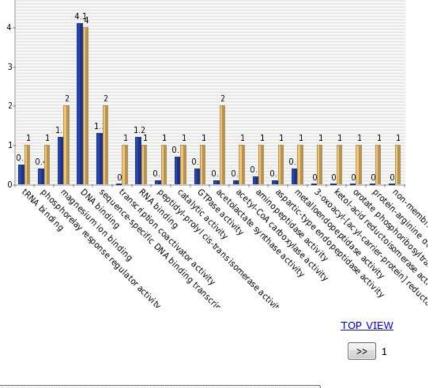

Navigation in each bar chart is simple and provides a top level view (as Figure 20) or bottom level (full details) view (as Figure 21) of the GO tree. (Middle levels of the GO tree are not accessible.)

Click to Perform Goodness Of Fit Test, to compare sample vs Genome in detail.

brain

Molecular Function Details

Figure 21


To compare the overall GO enrichment levels of a sample with its expected genome values, a Goodness of Fit test button is provided as Figure 22. The null hypothesis assumes that the sample and genome have similar values. Therefore a p-value of less than 0.05 allows rejection of the null hypothesis. This p-value does not help us to detect over/under represented GO groups in a sample, but can evaluate the overall similarity of all GO groups between sample and genome.

Click to Perform Goodness Of Fit Test, to compare sample vs Genome in detail. Two-sample Kolmogorov-Smirnov test : p-value: 0.002545268 Chi-squared test for given probabilities : p-value: 0

Figure 22

If the number of GO groups in samples is high, the task of visually comparing bar charts (to detect over/under represented GO groups) can be tedious. Therefore, we have provided a button 'Hyper Geometric Exact p-values' as shown in Figure 23. To perform this test one needs to be inside a specific name space (MF BP or CC) before clicking

on the button. The test cannot be performed when in the top view. As shown in Figure 23, over/under represented GO groups compared to the genome are highlighted in red and have p-value less than 0.05.

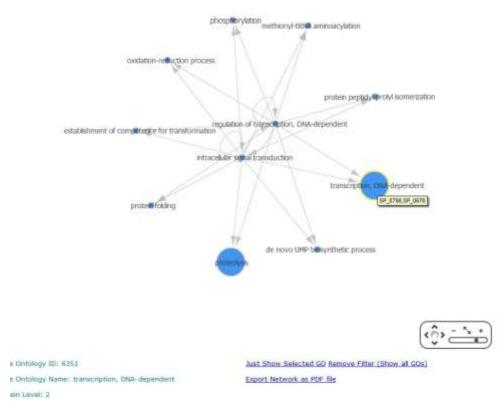
Click to Perform Goodness Of Fit Test, to compare sample vs Genome. Click to List Hypergeometric Exact P-values, to compare Sample vs Genome.

Significantly changed GO groups are in red colour (p-value < 0.05)

GO Name	P Value		
glutaminyl-tRNA synthase (glutamine-hydrolyzing) activity	0.0008185887		
acetolactate synthase activity	0.0008185887		
ATP binding	0.1014151		
oxidoreductase activity	0.1409650		
DNA binding	0.2045487		
magnesium ion binding	0.2201846		
sequence-specific DNA binding transcription factor activity	0.2405379		

Figure 23

Regulatory Networks of Biological Process Groups


To generate Biological Process networks for each sample, one simply clicks on the Network link for that sample in the home page. The networks generated appear as shown in Figure 24. At first glance, the network in Figure 24 presents three types of information including: 1) regulation of one GO by another GO (grey arrows indicate any regulation, green arrows indicate up-regulation, red arrows indicate down-regulation), 2) the association of GO and genes and 3) the level of GO enrichment represented by the sizes of nodes. The topology of the network can help to reveal novel relationships between groups of genes in a biological pathway. In addition, central GO groups that are associated with genes with the highest connectivity in the network can be used for gene selection.

Note: If ones sample is too large, one should not try to produce a network for it since this may take a long time or consume a lot of memory on ones computer. Best practice is to select a subset of a genome's genes that have a

particular biological significance. For example, the first 200 most highly differentially expressed genes can be selected to be analysed in a network.

When the rendered network is very large and complex one can apply a filter to the network by clicking on a specific node. This reveals a new sub network that shows only the relationships of that node with other nodes.

By hovering the mouse over a GO node, genes associated to that GO are displayed as shown in Figure 24.

Figure 24

It is apparent from Figure 24 that GO terms with the high level of protein enrichment are not essentially located in the centre of a network. This is consistent with our knowledge of the levels of expression of transcription factors.

For additional examples of sample data please refer to the Comparative GO home page.

Appendix: SAMPLE DATA

Lung	Blood	Brain	
SP_0432	SP_0211	SP_0133	
SP_0440	SP_0263	SP_0225	
SP_0675	SP_0538	SP_0325	
SP_0676	SP_1044	SP_0326	
SP_0677	SP_1045	SP_0327	
SP_0678	SP_1109	SP_0328	
SP_0683	SP_1329	SP_0333	
SP_0684	SP_1430	SP_0334	
SP_0685	SP_1517	SP_0335	
SP_0686	SP_1545	SP_0336	
SP_0692	SP_1673	SP_0341	
SP_0693	SP_1752	SP_0342	
SP_0694	SP_1860	SP_0343	
SP_0699	SP_2074	SP_0344	
SP_0702	SP_2182	SP_0349	
SP_0771	SP_2237	SP_0350	
SP_0772		SP_0351	
SP_0773		SP_0352	

SP_0774	SP_0421
SP_0779	SP_0422
SP_0780	SP_0423
SP_0781	SP_0424
SP_0782	SP_0429
SP_0787	SP_0430
SP_0788	SP_0431
SP_0789	SP_0432
SP_0790	SP_0437
SP_0795	SP_0438
SP_0796	SP_0439
SP_0797	SP_0440
SP_0798	SP_0445
_	SP_0446
	SP_0447
	SP_0448
	SP_0579
	SP_0581
	SP_0582
	SP_0587
	SP_0589
	SP_0590
	SP_0595
	SP_0596
	SP_0597
	SP_0603
	SP_0604
	SP_0605
	SP_0606
	SP_0675
	SP_0676
	SP_0677
	SP_0678
	SP_0683
	SP_0684
	SP_0685
	SP_0686
	SP_0691
	SP_0692
	SP_0693
	SP_0694
	SP_0699
	SP_0700
	SP_0701
	SP_0702
	SP_0739
	SP_0740
	SP_0741
	SP_0742
	SP_0747
	SP_0748
	SP_0749
	SP_0750
	SP_0755
	SP_0756
	SP_0757
	SP_0758
	SP_0763
	SP_0764
	SP_0765
	SP_0766
	SP_0771
	SP_0772
	SP_0773
	SP_0774
	SP_0779
	SP_0780
	SP_0781
	SP_0782
	SP_0787
	SP_0788
	SP_0789
	SP_0790
1	SP_0795
	SP_0796
	SP_0796 SP_0797 SP_0798

SP_0885
SP_0903
SP_0904
SP_0905
SP_0906
SP_0911
SP_0912
SP_0913
SP_0914
SP_0919
SP_0920
SP_0921
SP_0922
SP_0927
SP_0928
SP_0929
SP_0930
SP_1159
SP_1324
SP_1605
SP_2111